Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
library@neu.edu.tr · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

A servo system control with time-varying and nonlinear load conditions using type-2 TSK fuzzy neural system. Erdal Kayacan, Yeşim Oniz, Ayse Cisel Aras, Kaynak Okyay, Rahib Abiyev.

Yazar: Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:Elsevier B.V. 2011.ISSN:
  • 1568-4946
Konu(lar): LOC sınıflandırması:
  • TK5101
Çevrimiçi kaynaklar: İçindekiler: In Applied Soft Computing Journal Dec2011, Vol. 11 Issue 8, p. 5735-5744.Özet: Abstract A type-2 Takagi-Sugeno-Kang fuzzy neural system is proposed and its parameter update rules are derived using fuzzy clustering and gradient learning algorithms. The proposed type-2 fuzzy neural system is used for the control and the identification of a real-time servo system. Fuzzy c-means clustering algorithm is used to determine the initial places of the membership functions to ensure that the gradient descent algorithm used afterwards converges in a shorter time. A number of different load conditions including nonlinear and time-varying ones are used to investigate the performance of the proposed control algorithm. The control structure has the ability to regulate the servo system with reduced oscillations when compared with the results of its type-1 counterpart around the set point signal in the presence of load disturbances.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic TK5101 .S47 2011 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-7

Abstract A type-2 Takagi-Sugeno-Kang fuzzy neural system is proposed and its parameter update rules are derived using fuzzy clustering and gradient learning algorithms. The proposed type-2 fuzzy neural system is used for the control and the identification of a real-time servo system. Fuzzy c-means clustering algorithm is used to determine the initial places of the membership functions to ensure that the gradient descent algorithm used afterwards converges in a shorter time. A number of different load conditions including nonlinear and time-varying ones are used to investigate the performance of the proposed control algorithm. The control structure has the ability to regulate the servo system with reduced oscillations when compared with the results of its type-1 counterpart around the set point signal in the presence of load disturbances.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.