Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
library@neu.edu.tr · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

Medical Radiographs Compression Using Neural Networks And Haar Wavelet. Adnan Khashman, Kamil Dimililer.

Yazar: Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:2009. İEEE, New York :ISBN:
  • 978-1-4244-3967-6
Konu(lar): LOC sınıflandırması:
  • TA153
İçindekiler: Eurocon 2009: International IEEE conference devoted to the 150 anniversary of Alexander S. Popov, Vols 1- 4, proceedings 2009, p1448-1453 Özet: Efficient storage and transmission of medical images in telemedicine is of utmost importance however, this efficiency can be hindered due to storage capacity and constraints on bandwidth. Thus, a medical image may require compression before transmission or storage. Ideal image compression systems must yield high quality compressed images with high compression ratio; this can be achieved using wavelet transform based compression, however, the choice of an optimum compression ratio is difficult as it varies depending on the content of the image. In this paper, a neural network is trained to relate radiograph image contents to their optimum image compression ratio. Once trained, the neural network chooses the ideal Haar wavelet compression ratio of the x-ray images upon their presentation to the network. Experimental results suggest that our proposed system, can be efficiently used to compress radiographs while maintaining high image quality.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic TA153 .M43 2009 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-1716

Efficient storage and transmission of medical images in telemedicine is of utmost importance however, this efficiency can be hindered due to storage capacity and constraints on bandwidth. Thus, a medical image may require compression before transmission or storage. Ideal image compression systems must yield high quality compressed images with high compression ratio; this can be achieved using wavelet transform based compression, however, the choice of an optimum compression ratio is difficult as it varies depending on the content of the image. In this paper, a neural network is trained to relate radiograph image contents to their optimum image compression ratio. Once trained, the neural network chooses the ideal Haar wavelet compression ratio of the x-ray images upon their presentation to the network. Experimental results suggest that our proposed system, can be efficiently used to compress radiographs while maintaining high image quality.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.