Yakın Doğu Üniversitesi
Büyük Kütüphane
Adres
Yakın Doğu Bulvarı, Lefkoşa, KKTC
İletişim
library@neu.edu.tr · +90 (392) 223 64 64
Google Jackets'tan alınan resim
OpenLibrary'den resim

Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Kemal Ihsan Kilic, Rahib Hidayat Abiyev.

Yazar: Materyal türü: MakaleMakaleDil: İngilizce Yayın ayrıntıları:Elsevier B.V., 2011.ISSN:
  • 0165-1684
Konu(lar): LOC sınıflandırması:
  • QA614.86
Çevrimiçi kaynaklar: İçindekiler: In Signal Processing Oct2011, Vol. 91 Issue 10, p2332-2344Özet: Fractal dimension measures the geometrical complexity of images. Lacunarity being a measure of spatial heterogeneity can be used to differentiate between images that have similar fractal dimensions but different appearances. This paper presents a method to combine fractal dimension (FD) and lacunarity for better texture recognition. For the estimation of the fractal dimension an improved algorithm is presented. This algorithm uses new box-counting measure based on the statistical distribution of the gray levels of the “boxes”. Also for the lacunarity estimation, new and faster gliding-box method is proposed, which utilizes summed area tables and Levenberg–Marquardt method. Methods are tested using Brodatz texture database (complete set), a subset of the Oulu rotation invariant texture database (Brodatz subset), and UIUC texture database (partial). Results from the tests showed that combining fractal dimension and lacunarity can improve recognition of textures.
Bu kütüphanenin etiketleri: Kütüphanedeki eser adı için etiket yok. Etiket eklemek için oturumu açın.
Yıldız derecelendirmeleri
    Ortalama puan: 0.0 (0 oy)
Mevcut
Materyal türü Geçerli Kütüphane Yer numarası Durum Barkod
Online Electronic Document NEU Grand Library Online electronic QA614.86 .E97 2011 (Rafa gözat(Aşağıda açılır)) Ödünç verilmez EOL-8

Fractal dimension measures the geometrical complexity of images. Lacunarity being a measure of spatial heterogeneity can be used to differentiate between images that have similar fractal dimensions but different appearances. This paper presents a method to combine fractal dimension (FD) and lacunarity for better texture recognition. For the estimation of the fractal dimension an improved algorithm is presented. This algorithm uses new box-counting measure based on the statistical distribution of the gray levels of the “boxes”. Also for the lacunarity estimation, new and faster gliding-box method is proposed, which utilizes summed area tables and Levenberg–Marquardt method. Methods are tested using Brodatz texture database (complete set), a subset of the Oulu rotation invariant texture database (Brodatz subset), and UIUC texture database (partial). Results from the tests showed that combining fractal dimension and lacunarity can improve recognition of textures.

Bu materyal hakkında henüz bir yorum yapılmamış.

bir yorum göndermek için.