| 000 | naa a22 7ar4500 | ||
|---|---|---|---|
| 005 | 20151023114957.0 | ||
| 008 | 150528t xxu||||| |||| 00| 0 tu d | ||
| 001 | 265872 | ||
| 016 | _a000316904200007 | ||
| 022 | _a0218-3013 | ||
| 040 | _aNEU | ||
| 041 | _aeng | ||
| 050 | 0 | 4 | _aQC23 |
| 100 | 1 |
_9573001 _aIkhdair, Sameer M., _cAssoc. Prof. Dr. _ |
|
| 245 | 1 | 0 |
_aRelatıvıstıc Bound States In The Presence Of Spherıcally Rıng-Shaped Q-Deformed Woods-Saxon Potentıal Wıth Arbıtrary L-States _cSameer M. Ikhdair, Majid Hamzavi. |
| 260 |
_bWorld Scıentıfıc Publication, _c2013. |
||
| 520 | _aApproximate bound-state solutions of the Dirac equation with q-deformed Woods-Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov-Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l + 1)r (2). Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). | ||
| 650 | 0 |
_9572720 _aNear East University Article |
|
| 650 | 0 |
_9572723 _aYakın Doğu Üniversitesi Makale |
|
| 650 |
_9572798 _aDirac equation |
||
| 650 |
_9573516 _aNikiforov-Uvarov method |
||
| 650 |
_9574696 _aNoncentral potentıals; |
||
| 650 |
_9574697 _aapproximation scheme |
||
| 650 |
_9119255 _aCyprus |
||
| 773 |
_gMar 2013,Volume: 22, Issue: 3 _tInternatıonal Journal Of Modern Physıcs E-Nuclear Physıcs _x02183013 |
||
| 856 | _uhttp://library.neu.edu.tr:2048/login?url=http://dx.doi.org/10.1142/S0218301313500158 | ||
| 942 |
_x1000005 _kQC0000023R452013 _cOED |
||
| 999 | _c242559 | ||